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In Alzheimer’s disease (AD) progression, it is imperative to identify the subjects with mild cognitive impairment before clinical
symptoms of AD appear. )is work proposes a technique for decision support in identifying subjects who will show transition
from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) in the future. We used robust predictors from multivariate
MRI-derived biomarkers and neuropsychological measures and tracked their longitudinal trajectories to predict signs of AD in
the MCI population. Assuming piecewise linear progression of the disease, we designed a novel weighted gradient offset-based
technique to forecast the future marker value using readings from at least two previous follow-up visits. Later, the complete
predictor trajectories are used as features for a standard support vector machine classifier to identify MCI-to-AD progressors
amongst the MCI patients enrolled in the Alzheimer’s disease neuroimaging initiative (ADNI) cohort. We explored the per-
formance of both unimodal and multimodal models in a 5-fold cross-validation setup. )e proposed technique resulted in a high
classification AUC of 91.2% and 95.7% for 6-month- and 1-year-ahead AD prediction, respectively, using multimodal markers. In
the end, we discuss the efficacy of MRI markers as compared to NM for MCI-to-AD conversion prediction.

1. Introduction

Alzheimer’s disease (AD) is currently themost prevalent and
deadliest form of dementia amongst the elderly—its fatality
has increased by 68%, while other major disorders have
decreased (Alzheimer’s Association 2014). Several serious
attempts have been made at disease staging and early di-
agnosis over the past half-century to curb this high rate. In
2011, the National Institute of Ageing and Alzheimer’s
Association presented revised guidelines for diagnosing AD
[1]. )ey divided the disease into three stages: (1) preclinical
AD, in which measurable changes in biological and path-
ological markers occur; however, no outward changes are
observed, (2) mild cognitive impairment (MCI), during
which slight memory and cognitive complaints are observed

and measured, and (3) dementia due to AD, when the
patient cannot perform daily life activities due to memory
and cognition problems. It is also established that not all
MCI patients necessarily develop AD in the future [2].
Generally, there are two kinds of clinical changes for MCI
patients: (1) MCI stables (MCIs) are those who retain MCI
diagnosis at future time points and (2) MCI progressors
(MCIp) are those who show symptoms of AD in the future.
Hence, it is imperative to develop reliable techniques to
foresee the future clinical trends in MCI patients which can
later be used to categorize them as MCIp or MCIs.

A variety of predictors have been proposed for early
diagnosis of AD ranging from noninvasive neuro-
psychological measures (NM) [3] and structural magnetic
resonance imaging (MRI) to others like positron emission
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tomography (PET), chemical content of cerebrospinal fluid
(CSF), and genetic sampling [4]. Recent research is focused
on the efficacy of these markers for detecting MCI pro-
gression to AD. Numerous studies examined the role of
cognitive markers for the conversion prediction task [5–7],
while various other projects resorted to scrutinizing the
biological markers [8–11]. Similarly, a plethora of studies
reported enhanced predictive power of strategies involving
multimodal information [12–16], while many authors
proposed composite predictors of the latent disease [17, 18].
Among several studies, the authors of [9, 19] presented
effective feature selection strategies incorporating regular-
ized linear regression and deep neural networks, respec-
tively. However, a presentation by Sperling et al. [1] indicates
that cognitive function and brain structure deteriorate more
sharply during MCI to AD transition than other factors like
protein deposition. Similarly, NM and MRI measures are
most prevalent in the literature as they are comparatively
cheaper and easier to obtain than CSF measures which
require lumbar puncture. Most of these studies resort to
using the baseline data only, whereas, in practice, data from
multiple time points may contain helpful information re-
garding the disease’s underlying pathology.

Identification of AD as a slowly progressing disease has
gained interest of many researchers. AD must be monitored
over time to capture the predictor variability effectively and
understand the disease progression. Hence, to predict MCI
conversion to AD, the researchers started taking into ac-
count the longitudinal data instead of one time-point data
[8, 9, 20, 21]. Huang et al. [22] quantified the 6-month-apart
longitudinal change observed in significant voxels of MRI
images using linear regression and, later, employed a hi-
erarchical classifier to categorize MCIp and MCIs. )eir
longitudinal method achieved a classification accuracy of
79.4% compared to 71.7% accuracy obtained when they used
baseline data only, hence reinforcing the abilities of longi-
tudinal data. Lee et al. [23] investigated the effects of lon-
gitudinal callosal atrophy to predict MCI to AD conversion.
)eir method was found to be more accurate (84%) for
female patients than male patients (61%). Another powerful
method for MCI progression was presented by Runtti et al.
[24], who employed neuropsychological measures and
heterogeneous biomarkers to calculate the Disease State
Index (DSI) of all patients. Previous DSI measures were then
used to estimate the next DSI using linear regression. )e
classification accuracy achieved by this method was 76.9%.
Guo et al. [25] proposed a robust, novel method using three-
year follow-up data to mine a dynamic MRI morphological
feature and based MCI-to-AD conversion prediction on it.
)e classification accuracy obtained by Guo et al. was
84.62%. A few other significant studies employing longi-
tudinal predictor information are summarized in Table 1.
Lawrence et al. [28], apart from advocating the superior
power of time-series data for early AD prediction, provided a
detailed review of studies to gather longitudinal data for this
domain. However, the researchers are still faced with the
sparsity of data on CSF and PET scans for the said task.

A variety of machine learning and pattern recognition
techniques have been validated and tested in theMCI-to-AD

conversion prediction domain, which includes supervised
[9, 16], unsupervised, and semisupervised [11, 29] methods.
Further stratifications involve classification and regression
[15, 21] techniques. While SVM and its variants have been a
classical choice for early diagnosis of AD [26], several re-
searchers opted to use random forests [11], hierarchical
classifiers [22], and maximum uncertainty linear discrimi-
nant analysis [30]. Despite many efforts, the desired per-
formance in terms of AUC and accuracy for a stable clinical
decision support technique has not been achieved. In many
studies, a tradeoff between sensitivity and specificity of the
system is observed. From most of the earlier studies, it is
extracted that the quality of predictors is more crucial in
detecting MCI progression than the classifier’s sophistica-
tion. Recognition of an effective feature set for classification
is essential. Another noticeable fact that resulted in low
performance of systems for early diagnosis of AD is the use
of one time-point data only. Peterson et al. [31] reinforce
that the rates of clinical changes in MCI subjects are
meaningfully rapid than the controls, hence enhancing our
interest in quantifying those changes.

In this paper, we propose a multistep method to forecast
next-in-sequence predictor readings engaging the previous
two readings and later use the time-series information for
MCIp and MCIs classification employing an SVM classifier.
Our experiments incorporate nonbrain neuropsychological
measures (NM) and brain MRI-derived measures as pre-
dictors of MCI progression to AD. We designed a novel
weighted gradient offset method, which calculates the future
predictor reading employing two consecutive, previously
available, time-domain readings of multimodal predictors.
)e future value forecasting system is governed by quan-
tifying previous gradient changes onto the next interval. )e
novelty of the proposed method lies in the effective em-
ployment of several bimodal predictors to forecast future
predictor readings. We validate the proposed method on
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
set. )e efficacy of our system is judged on nonbrain and
brain predictors in individual and combined settings.

2. Materials

2.1. ADNI. Data used in this work are obtained from Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database.
ADNI is a large-scale multisite study that aims at analyzing
markers from cognitive tests, blood tests, tests of CSF, and
MRI/PET imaging concerning their ability to characterize
the progression of Alzheimer’s disease. ADNI results from
the efforts of many co-investigators from a broad range of
academic institutions and private corporations. Subjects
were recruited from over 50 sites across the US and Canada.
ADNI data used in this study were retrieved in January 2019.
Till then, ADNI, in its three studies (ADNI-1, -GO, and -2),
had recruited over 1500 adults aged between 55 and 90 years
to participate in this study. For up-to-date information, see
http://www.adni-info.org.

Here, for technique validation, we consider the subset of
MCI subjects enrolled in ADNI-1 with at least three con-
secutive follow-up readings available. )e subjects with MCI
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converting to AD any time before the last follow-up time,
i.e., 36th month, are called MCI progressors (MCIp), and
those retaining MCI diagnosis at all times are known as
MCI stables (MCIs). Subjects with missing values at
designated follow-up times are ignored. For 6-month-
ahead prediction, the dataset consists of subjects with
three consecutive 6 monthly follow-up readings. )ere-
fore, we have 49 MCIp and 70 MCIs subjects whose IDs
are given in the supplementary files (available here).
Similarly, for 1-year-ahead prediction, the dataset con-
tains three consecutive annual readings, resulting in 35
MCIp and 50 MCIs subjects. Subject demographic in-
formation at baseline is stated in Table 2.

2.2. Markers. A study conducted by Sperling et al. [1]
demonstrates that in contrast to chemical and protein
compositions, brain morphometry, clinical function, and
cognitive performance are most affected during MCI-to-AD
transition. Hence, in this work, we concentrate on longi-
tudinal analysis and use of nonbrain neuropsychological
markers (NM) and brain MRI morphometric markers only.
Further details about the markers considered in this study
are specified as follows.

2.2.1. Neuropsychological Markers (NM). ADNI partici-
pants are asked to perform a series of neuropsychological
tests and clinical assessments regularly. )e scores and
values of each test and assessment are recorded. )e NM
employed in this work are identified in [32]. In [33],
Pereira et al. comprehensively studied the impact of
various neuropsychological measures on MCI-to-AD
conversion prediction, and based on those findings, we
select a total of eight markers which are as follows: total
scores of AD Assessment Scale (ADAS 13), Rey Auditory
Verbal Test (RAVLT), Clock Drawing Test (CDT), Clock
Copying Test (CCT), Immediate Recall Total Score
(LIMM), Mini-Mental State Examination (MMSE), Trail
Making Test A (TRAA), and Trail Making Test B (TRAB).
Table 3 describes the mean and standard deviations ob-
served in these values. )e test procedures and scoring
criteria for the selected cognitive tests are given in the
ADNI General Procedures Manual [32].

2.2.2. MRI Morphometric Markers. For MCI-to-AD con-
version prediction, we also employ the longitudinal MRI
morphometric measures provided by the University of Cal-
ifornia, San Francisco, Memory and Ageing Centre, on the
ADNI website. )e complete details of extracting the MRI-
derived measures are provided in [32]. Briefly, T1-weighted,
MPRAGEMR scans from a 1.5T Siemens scanner (dimensions
1mm× 1mmx1mm, TR: 20ms, TE: 5ms) were downloaded
and preprocessed for gradient warping, scaling, B1 correction,
and N3 inhomogeneity correction by Mayo Clinic [34–36].
Cortical reconstruction and volumetric segmentation were
then performed using Freesurfur image analysis suite version
4.3 based on the framework provided in [37]. In the said
framework, a within-subject template space and average image,
unbiased towards the chronological scan order, was created
using robust, inverse consistent registration [38, 39]. Cortical
morphometric measures were obtained after iterative topology
correction, nonlinear Atlas registration, and nonlinear
spherical surface registration. )e segmented images were
passed through an intensive quality control (QC) process [40]
byMayo clinic and provided for use on the ADNI website.)e
current study includes the information only from those images
which passed the overall QC process. )e MRI biomarkers
consist of volumes of brain regions obtained after cortical
parcellation and white matter parcellation, the surface area of
the brain regions, and cortical thickness of the brain regions
provided in the UCSFFSL file on the ADNI website. We
consider a total of 249 brainMRI features in the current study.

3. Methods

Our work focuses on utilizing the embedded predictive
power in longitudinal features for MCI progression pre-
diction. We use multimodal (nonbrain NM and brain MRI)

Table 1: Previously performed longitudinal studies.

Author Follow-up interval
(months)

Follow-up
duration (months) Predictors Dataset

(MCIp/MCIs) Accuracy (%) AUC (%)

Guo [25] 6 36 MRI 43/35 84.6 92.5
Teng [26] 6 48 PET, NM 33/46 88.6 93.1
Lee [27] 6 24 MRI, CSF, NM 81.0 86.0
Huang [22] 6 48 MRI 70/61 79.4 81.2
Lee [23] 12 24 MRI 78/54 84.0 (female) —
Arco [28] 6 12 MRI, NM 73/61 74.0 79.3
Runtti [24] 24 24 MRI, NM, CSF, genetic 126/174 76.9 82.3
Zhang [9] 6 24 MRI, NM, PET 35/50 78.4 76.8
Davatzikos [17] 12 36 MRI, CSF 69/170 55.8 73.4
Misra [8] 8 15 MRI 27/76 — 77.0
NM : neuropsychological measures, PET : positron emission tomography, MRI :magnetic resonance imaging, and CSF : cerebrospinal fluid.

Table 2: Subject demographic information.
MCIp (n� 49) MCIs (n� 70)

6 months
Age 73.3± 7.4 74.7± 7.3

Gender (M/F) 29/20 36/34
Education 15.8± 2.9 15.3± 2.9

MCIp (n� 35) MCIs (n� 50)

1 year
Age 73.5± 7.2 74.8± 7.3

Gender (M/F) 2/15 29/21
Education 16.0± 2.7 15.8± 2.7
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markers recorded at two consecutive follow-ups for MCI
subjects and pass them through a pipeline to forecast the
next marker value. )e time-domain readings (three in
number) are then collectively considered for MCIp or MCIs
label prediction. )e detailed process overview is shown in
Figure 1, which shows nested cross-validation loops with a 5-
fold outer loop for classification and an inner leave-one-out
loop for average weights calculation. )e process is repeated
for all feature subsets.

)e proposed approach for longitudinal trajectory
modeling is three-phased: (1) estimating gradient offset and
its weights from the training data, (2) forecasting future
marker values for the test data using models generated by the
training data, and (3) classifying the time-domain trajec-
tories of test instances as one of the two classes.)e system is
implemented on MATLAB R2018a. Details of each module
are in the following sections.

3.1. Preprocessing

3.1.1. Marker Normalization. Feature normalization is an
essential step in a multivariate, multiscaled machine
learning environment. Normalization is performed to
remove bias due to very small or very large-scaled values.
We scale all features to have values between 0 and 1 before
the train-test split. For longitudinal dataset normaliza-
tion, we divide the time-domain trajectories of each
biomarker by the maximum value of the respective bio-
marker to produce values between 0 and 1 while pre-
serving the longitudinal trends.

3.1.2. Marker Ranking and Selection. )e biomarker set we
consider in this work consists of 249 MRI and 8 NM
biomarkers, of which not all contribute effectively to-
wards MCIp vs. MCIs segregation. For optimal bio-
marker subset determination, we adopt a wrapper-based
approach for selecting significant biomarkers. We per-
form two sampled Student’s T-tests on baseline bio-
marker readings and then sift them according to their
ranks in impact towards MCIp vs. MCIs discrimination.
)e p values of the T-test indicate the significance of a
particular biomarker towards effective diagnostics. Later,
we form biomarker subsets by incrementally adding one
biomarker at a time according to its rank. Each biomarker

subset is modeled and evaluated for its efficacy through
our proposed system.

3.2. Longitudinal Trajectory Modeling. To forecast future
clinical changes of an MCI subject, i.e., at t + 2Δt, a reliable
predictor model must capture the effects of past feature
readings (at t and t + Δt) and project them onto the future
clinical readings. Assuming longitudinal trajectories to be
piecewise, we select a linear progression model for MCI-to-
AD progression to avoid overfitting to a small dataset
[41, 42].

For weights calculation and model validation, we divide
the dataset into a 5-fold cross-validation setup. )e training
set is further stratified into training and validation set
according to the leave-one-out (LOO) scheme for hyper-
parameter tuning. Let Xc � X1, X2, . . . , XN  be the training
set of all N longitudinal predictors of n MCI subjects be-
longing to class c (c� 1 for MCIp and c� 0 for MCIs). )en,
Xm � xmi(t) xmi(t + Δt) xmi(t + 2Δt) , form � 1, . . . ,

N, i � 1, . . . , n,Δt � 0.5, 1, where Δt is 0.5 for 6-month-
ahead prediction and 1 for one-year-ahead prediction. )e
base gradient, δc

m(Δt), quantifies the average piecewise
change for themth predictor’s trajectory belonging to class c.
To obtain δc

m(Δt), we subtract xmi(t) fromxmi(t + Δt), di-
vide it by Δt, and average it over the total number of in-
stances in the respective class.

Similarly, we calculate the piecewise gradient between
consecutive longitudinal values of the validation instance,
δmi(Δt), using Euclidean geometry as δmi(Δt) �

xmi(t + Δt) − (xmi(t)/Δt) form � 1, . . . , N, i � 1, . . . , n. )e
validation subject’s piecewise gradient, δmi(Δt), is subtracted
from the respective base gradient δc

m(Δt) to obtain the
gradient offsets OSmi(Δt).

We aim to measure the extent to which the gradient
offsets between interval t and t + Δt, i.e., OSmi(Δt), affect the
future gradient offset fOSmi(Δt), over the interval t + Δt and
t + 2Δt of a particular marker m. )e process of obtaining
gradient offsets is graphically depicted in Figure 2.Wemodel
the gradient offset relationship between the current and next
follow-up interval by an over-determined system of linear
equations modulated by the vector of linear prediction
coefficients μ. For a particular marker m, this relationship is
represented by

Table 3: Neuropsychological measures used in this study (M± SD: mean± standard deviation).

Neuropsychological measure MCIp MCIs p values
ADAS-cog total 11 19.9± 3.83 14.4± 5.22 <0.001
RAVLT 6.26± 1.71 9.13± 2.75 <0.001
CLOCKSCOR 4.12± 1.12 4.49± 0.64 0.069
COPYSCOR 4.76± 0.49 4.68± 0.65 0.463
LIMMTOT 7.00± 2.87 8.19± 2.82 <0.05
MMSE 26.82± 1.64 27.80± 1.52 <0.05
TRAASCOR 49.58± 28.11 37.01± 9.96 <0.05
TRABSCOR 125.6± 62 104.4± 49.4 0.061
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A × μ � Bm, whereA �

OS11(Δt) · · · OSN1(Δt)

⋮ ⋱ ⋮

OS1n(Δt) . . . OSNn(Δt)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

μ �

μ11
⋮

μNn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ andB �

fOSm1(Δt)

⋮

fOSmn(Δt)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, form � 1, . . . , N.

(1)

We solve equation (1) for µ such that the squared error
between predicted and actual offsets is minimized. )e
derivative of the squared error is equated to 0, and the final
formulation of μ is obtained by µ � (ATA)− 1ATBm. μ is the
vector containing the values of linear prediction weights
quantifying the effects of heterogeneous, multivariate
markers on the future values of the marker under consid-
eration. For an optimal model generation, we average the
obtained weights over LOO validation folds.

Validation Set (1%)Training Set (99%)

Inner CV Loop (LOO)

Outer 5-Fold CV Loop

Base Gradient & Gradient 
Offset Calculation

Calculate difference in
gradients of training instance 

and class mean

Gradient Offset Weights Calculation

Estimate contribution of gradient offset 
of multiple markers towards estimation 

of next in sequence marker value

Averaging of obtained weights 
over CV folds

Test Set (20%)

Future value forecastingSVM Classification

Model Development Set (80%)

AUC, Accuracy,
Sensitivity, Specificity

Full Normalized
Longitudinal Dataset (n=85)

Marker Ranking

For 1 to N markers

Figure 1: System overview.
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3.3. Future Value Forecasting. In this work, we forecast the
future clinical changes of an MCI subject using the previous
two consecutive follow-up readings of heterogeneous
markers to enhance classification performance for MCIp vs.
MCIs. Let y be a test instance with two known predictor
readings for a predictor m as ym(t) andym(t + Δt) and
piecewise linear relation between them. We calculate the
future values, ym(t + 2Δt), using Euclidean geometry
according to

ym(t + 2Δt) � ym(t + Δt) + ωm ∗ t, whereωm

� αm + βm form � 1, . . . , N.
(2)

Here, ωm is the piecewise gradient between (t + Δt) and
(t + 2Δt) of a marker m. We calculate ωm by adjusting the
weighted gradient offset βm to the base gradient αm. )e
methods to obtain αm and βm are detailed in the following.

3.3.1. Base Gradient αm. We evaluate the points
ym(t) andym(t + Δt) for their belongingness to one of the
groups, MCIp or MCIs, using the known time-point marker
values and annual change in those values as features. )ese
features are fed to a linear support vector machine (SVM)
classifier. SVM is selected for binary classification based on
limited dataset availability and the robustness of the said
classifier [43]. Upon the suggestion of the base group by the
SVM classifier, we substitute the average annual change,
δc

m(Δt), of the respective class for αm.

3.3.2. Weighted Gradient Offset βm. It is important to in-
corporate the effects of multivariate markers in forecasting
future marker readings. In this study, we integrate the
multivariate effects into the gradient offset measure which is
added in αm. )e gradient between the recorded follow-up
readings δym

(Δt) of ym is calculated by subtracting
ym(t) fromym(t + Δt) and dividing it by Δt. Gradient offset
for the marker OSym

is calculated by OSym
� αm − δym

, which
quantifies the difference between the base gradient and the
actual predictor gradient.

To incorporate the effects of multiple predictors onto the
future value of the predictor under consideration, we
multiply the vector of linear prediction weights µ by the
offset vector OSym

to obtain βm according to

βm � μ × OST
ym

, form � 1, . . . , N. (3)

We substitute the obtained values of αm and βm in
equation (2) to forecast the following value of the predictor
m of the test MCI subject. )is method is repeated for all N
markers being considered in the marker subset to obtain
complete time-domain trajectories for the multivariate
markers.

3.4. Trajectory Classification. Once the complete time-point
biomarker trajectories for individual MCI patients are ob-
tained, we classify them as MCIp andMCIs using a standard
linear SVM classifier. After classification, we assign a class

label and likelihood values for the respective class to each
MCI individual.

3.5. Performance Evaluation. To analyze the effectiveness of
future biomarker values forecasting, we record the mean
absolute error (MAE) between the predicted and observed
values. Later, to quantify the performance of MCIp vs. MCIs
classification, we document the area under ROC (AUC),
accuracy, sensitivity, and specificity of the results.

4. Results and Discussion

To fully assess the efficiency of our methods, we design three
different types of experiments using the following data:

(i) NM only
(ii) MRI markers only
(iii) NM and MRI combined

For in-depth analysis, we calculate the ground truth
(GT) performance scores also in which actual longitudinal
marker values, as recorded by ADNI, are used to classify
MCIp vs. MCIs, thus overriding the future value-forecasting
step. Hence, the GTperformance metrics can be used as the
benchmark metrics. )e aggregate observations from these
experiments are described in the following.

4.1.Observations aboutMarker Ranking. Table 4 lists the top
five features noted at 6-month- and 1-year-ahead of con-
version predictions. )e two NM RAVLTand ADAS display
the lowest p values, indicating their valuable significance in
MCI-to-AD conversion prediction in both long and short
periods. We further note that brain volumes are more
significant when performing short-term predictions,
whereas average cortical thickness proves to be more sig-
nificant for 1-year-ahead predictions.

4.2. Observations about Future Value Forecasting. )e pri-
mary objective of this paper is to accurately forecast the
marker readings at a future time point based on preceding
follow-up data to aid in better MCI-to-AD conversion
prediction. We expect that accurate forecasting of a marker
reading will decrease the difference between the GT and the
proposed system’s classification performance. Mean abso-
lute error (MAE) is the metric used to quantify the error
between actual and predicted marker values. In Figure 3, we
present the trends observed in MAE with the increasing
number of predictors for 6-month- and 1-year-ahead value
forecasting. In all of the experiments designed (NM, MRI,
and NM+MRI), we observe that initially, the forecasting
errors increase and are discontinuous but decrease and
stabilize later as the number of predictors crosses a certain
threshold. Of 257, 98 features present a p value of less than
0.05, indicating that the addition of significant markers in
the feature set for future value forecasting will enhance the
system’s classification performance. )e minimal effect of
low-significance features on MAE when the feature set
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crosses a certain number of predictors is visible through the
tailing of the MAE graphs.

In Figure 3(a), when NM alone is considered for fore-
casting future time-point readings, the forecasting error
reaches the highest (MAE> 12%) amongst all experiments.
It reinforces that human behavior is unpredictable, and
modeling it can be erroneous, especially over a short (6
months) follow-up duration. On the contrary, in Figure 3(b),
experiments considering MRI measures alone report the
lowest MAE (<4%) values. )e low MAE in MRI measure
alone highlights the linear predictability and irreversibility of
brain atrophy. 6-month-ahead prediction of MRI markers is
more accurate than 1-year-ahead prediction as brain atrophy
is a relatively slow process, and minor change occurs be-
tween a closer follow-up duration than a longer follow-up
duration. In Figure 3(c), we show that the error in fore-
casting NMs can be reduced by leveraging the power of more
predictable MRI measures. )e proposed gradient offset
method for future value forecasting positively aids in

predicting the future course of a marker by employing
differential information from multimodal features.

In Figure 4, we present a comparative summary of MAE
of forecasted measures against the classification model,
delivering the highest classification AUC. For 6-month-
ahead prediction, the NM classification model with 2
markers results in MAE of 21.6% (p value 2.15×10− 5). )e
MRI classification model with 13 markers presents the
lowest MAE of 2.67% (p value 0.0001), while the bimodal
setup delivers MAE of 3.64% (p value 0.001) with 19
markers. On the other hand, for 1-year-ahead conversion
prediction, we record an MAE of 12.8% (p value 0.0001)
using the NM classification model with 4 features, while the
best MRI model displays an MAE of 2.6% (p value 0.001)
with 13 features. Likewise, the bimodal model with 9 bio-
markers delivers an MAE of 3.2% (p value 0.002). We
observe lower forecasting errors over a comparatively longer
follow-up duration, hence strengthening the fact that longer
follow-up durations enhance the predictability of a marker.

Table 4: Top ranked markers and their p values.

6 months 1 year
Rank Marker p values Marker p values
1 RAVLT 8.6×10− 12 RAVLT 4.45×10− 9

2 ADAS 2.1× 10− 10 ADAS 2.6×10− 8

3 Volume of right amygdala 9.1× 10− 07 Cortical thickness of left isthmus cingulate 8.3×10− 6

4 Volume of right entorhinal 1.7×10− 06 Cortical thickness average of left fusiform 1.78×10− 5

5 Volume of left amygdala. 2.0×10− 06 Cortical thickness average of right isthmus cingulate 2.7×10− 05

NM

2
7

12
17
22
27

M
A

E 
(%

)

2 3 4 5 6 7 81
No. of Markers 

6 months
1 year

(a)

MRI

2

2.5

3

3.5

M
A

E 
(%

)

15
7

11
8

20
9

24
8

19
6

18
3

17
0

10
5

14
4

13
1

22
2

23
56627 7914 40 92531

No. of Markers

6 months
1 year

(b)

NM+MRI

2
4
6
8

10
12
14

M
A

E 
(%

)

11
1

17
1

18
1

12
1

13
1

10
1

21
1

16
1

15
1

20
1

22
1

23
1

19
1

14
1

24
1

25
181 91615141312111 711

No. of Markers

6 months
1 Year

(c)

Figure 3: Mean absolute error (MAE) versus number of predictors in the predictor subset for 6-month- and 1-year-ahead future value
forecasting using (a) NM only, (b) MRI only, and (c) NM and MRI combined.
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4.3. Observations about MCIp vs. MCIs Classification
Using Longitudinal Data. Figure 5 plots the trends in av-
erage AUC (blue lines) and accuracy (yellow lines) metrics of
both GT (dotted lines) and proposed (solid lines) clas-
sification method for 6-month-ahead (first column) and
1-year-ahead (second column) prediction. From all
graphs of Figure 5, we can collectively note that initially,
classification performance augments as the number of
predictors increases but later, we observe no significant
change due to the addition of less-significant features. An
interesting observation is made that MRI measures, de-
spite being accurately forecasted, deliver the least clas-
sification AUC. )is observation is as per previous
reports by Brooks et al., which state that longitudinal
biological markers are less efficient in capturing AD
dynamics than cognitive scores. )e same was concluded
by Gomar et al. [5, 6] and Ewers et al. [44]. )e hypo-
thetical predictor model presented by Sperling et al. [1]
also depicts a sharper decline in cognitive performance as
compared to structural atrophy of the brain. However,
the classification power of our system is the highest when
NM measures are used in conjunction with MRI mea-
sures which is mentioned in Table 5. In 6-month- and 1-
year-ahead predictions, the proposed method delivers a
maximum AUC of 91.2% (p value 4.7 ×10− 6) and 95.7%
(p value 4.1 × 10− 7) using 19 and 9 bimodal features,
respectively. In Figure 6, we display the difference be-
tween GT AUC and AUC obtained through our system,
which is maximum in the case of NM and least in the case
of MRI measures. )is observation stems from the trends
noted earlier that NM are forecasted with the highest
error while MRI measures are more accurately forecasted.
Table 6 entails the accuracy, sensitivity, and specificity of
the proposed method using the optimal model for both 6-
month- and 1-year-ahead prediction. )e bimodal setup
delivers improved sensitivity and specificity as compared
to unimodal models.

)e above-stated performance metrics conclude that
longer follow-up time and multimodal predictors are fa-
vorable for future value forecasting and predicting early AD
onset. A combination of biomarkers and cognitive scores
augment the confidence in the progressive nature of the
underlying disorder. ADAS and RAVLTprove to be the two

most informative markers for the said conversion task.)ese
findings have been advocated by many others, including
[9, 14, 15, 44].

Table 7 shows a brief comparison of current results with
state-of-the-art results obtained on the longitudinal ADNI
dataset mainly using NM and MRI data. AUC is considered
for comparison to account for imbalance in the data. Misra
et al. [8] and Davatzikos et al. [18] employed MRI images to
assign abnormality scores to MCIp and MCIs patients.
High-dimensional classificationmethods were applied to the
scores to detect MCI progression to AD. )ey presented
respective AUCs of 77% and 73.4% only.

Similarly, Hinrichs et al. [45] proposed a multimodal
disease marker using various modalities of data (MRI, PET,
and cognitive scores) coupled with SVM classification to
identify MCIp patients. )e experiments revealed that the
proposed technique using longitudinal MRI data produced a
maximum MCIp classification AUC of 79%. Moradi et al.
[11] also promoted a framework for an aggregate biomarker
for MCI conversion prediction using MR imaging data and
cognitive scores adjusted with age. )e aggregate biomarker
devised using random forests presented an AUC of 90.2%.
However, the use of high-dimensional imaging data lowers
the efficacy of systems.

On the contrary, Zhang et al. [9] attempted to predict
future clinical change in a biomarker leveraging MRI and
PET data and identified MCIp with an AUC of 76.8% using
multikernel SVM. Other attempts of predicting longitudinal
trajectories of biomarkers have also been recently reported
[49]. Spasov et al. [46] applied the deep learning approach to
MRI and clinical data to perform the said classification with
an AUC of 92.5%.

While most studies focus on combining multimodal data
and projecting them into a single space, we believe that
considering predictors independently can preserve more
information required for MCIp identification. Owing to the
“lag” between brain atrophy and cognitive decline, when
discriminating predictors are given independently to the
classifier, enhanced classification performance is obtained as
recorded. )e method proposed in this paper has recorded
the highest classification AUC of 95.7% predominantly
because of involving the forecasted marker value at the time
of conversion as a classification feature. Our approach is
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Figure 4: Mean absolute error (MAE) recorded for best performing models in experimental setups for 6-month- and 1-year-ahead marker
forecasting.
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Figure 5: Trends noted in GT and obtained AUC and accuracy for 6-month-ahead (Column 1) and 1-year-ahead (Column 2) conversion
prediction.

Table 5: Comparison of ground truth (GT) AUC and obtained AUC using the proposed method.

6 months 1 year
Size of

marker set
GT AUC
(p value)

Proposed AUC
(p value)

Size of
marker set

GT AUC
(p value)

Proposed AUC
(p value)

NM 2 90.7% (1.7×10− 5) 87.1% (1.9×10− 5)\ 4 93.7% (4.1× 10− 6) 91.5% (5.1× 10− 6)
MRI 13 88.71% (4×10− 6) 88% (1.3×10− 6) 13 91.4% (8.7×10− 7) 90.5% (1.02×10− 6)
NM+MRI 19 94.2% (4.8×10− 6) 91.2% (4.6×10− 6) 9 98% (8.5×10− 8) 95.7% (4.05×10− 7)
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flexible and can be extended to incorporate other longitu-
dinal predictors very easily.

5. Conclusion

In the current study, we presented a pipeline to identify the
MCI patients who will develop AD in the future. Cognitive
status and MRI measures were separately and collectively
employed. )e longitudinal trends observed in the pre-
dictors are utilized to forecast the future variability in the
predictor values. )e time-series data of markers are used
to classify a subject as a progressor or a stable feature. Our
best bimodal model forecasted the future values with a
high precision (MAE: 3.64%) and yielded an excellent
classification performance (AUC: 91.2%, accuracy: 84%)
for 6-month-ahead conversion prediction. More stable
results were obtained for 1-year-ahead AD diagnosis
(MAE: 3.18%, AUC: 95.7%, accuracy: 81%). We conclude
that it will be interesting to incorporate other predictors
like PET and CSF measures in this framework and repeat
the process for longer-term-ahead prediction. )e use of a
genetic algorithm or neural network for weight learning is

also an explorable avenue in this domain to improve the
results.

Data Availability

In this paper, we have used data provided by Alzheimer’s
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